
Clustering and Visualization of Geodetic Array Data
Streams using Self-Organizing Maps

Răzvan Popovici∗
Răzvan Andonie†
Walter M. Szeliga‡

Timothy I. Melbourne‡
Craig W. Scrivner‡

∗Altair Engineering Inc., Troy, MI, USA
and Department of Computer Science and Engineering, Oakland University, Rochester, MI, USA

† Computer Science Department, Central Washington University, Ellensburg, USA
and Electronics and Computers Department, Transylvania University of Braşov, Romania
‡ Department of Geological Sciences, Central Washington University, Ellensburg, USA

Abstract—The Pacific Northwest Geodesic Array at Central
Washington University collects telemetered streaming data from
450 GPS stations. These real-time data are used to monitor
and mitigate natural hazards arising from earthquakes, volcanic
eruptions, landslides, and coastal sea-level hazards in the Pacific
Northwest. Recent improvements in both accuracy of positioning
measurements and latency of terrestrial data communication have
led to the ability to collect data with higher sampling rates.
For seismic monitoring applications, this means 1350 separate
position streams from stations located across 1200 km along the
West Coast of North America must be able to be both visually
observed and automatically analyzed at a sampling rate of up
to 1 Hz. Our goal is to efficiently extract and visualize useful
information from these data streams. We propose a method to
visualize the geodetic data by clustering the signal types with
a Self-Organizing Map (SOM). The similarity measure in the
SOM is determined by the similarity of signals received from
GPS stations. Signals are transformed to symbol strings, and the
distance measure in the SOM is defined by an edit distance. The
symbol strings represent data streams and the SOM is dynamic.
We overlap the resulted dynamic SOM on the Google Maps
representation.

I. INTRODUCTION

The Pacific Northwest Geodesic Array (PANGA) Geodesy
Laboratory at Central Washington University (CWU) has a
primary scientific role to support high precision geodetic
measurements using Global Positioning System (GPS) ob-
servations in order to characterize crustal deformation, plate
tectonic motions, coastal and earthquake hazards, and other
environmental science applications. Under contracts from the
National Science Foundation, the National Aeronautics and
Space Administration, the U.S. Geological Survey, and UN-
AVCO, Inc., the Laboratory analyses all publicly shared GPS
data within the Cascadia subduction zone [1] and greater
Pacific Northwest. The Geodesy Laboratory analyzes data from
roughly 1000 GPS stations that comprise the EarthScope Plate
Boundary Observatory, whose stations span the Pacific-North
American tectonic plate boundary from Alaska to Mexico. Fig.
1 is a map of all stations currently analyzed by CWU. In addi-
tion to serving as the Data Analysis Facility for the PANGA,
the Geodesy Laboratory also supports field experiments on

Fig. 1. Panga sensor placement.

Cascades volcanoes and in mainland Mexico, Baja California,
California, Idaho, Montana, Oregon, and Washington. CWU
also operates a continuous GPS network in Nepal.

Data from 450 GPS stations are telemetered in real-time
back to CWU, where they are processed, also in real-time,
using both NASA Jet Propulsion Lab’s RTG [2] software
as well as Trimble’s RTKNet Integrity Manager software to
provide relative positioning of several mm resolution across the
Cascadia subduction zone and its metropolitan regions. These
real-time data are used to monitor and mitigate natural hazards
arising from earthquakes, volcanic eruptions, landslides, and
coastal sea-level hazards. In addition, they are also used to
monitor man-made structures such as Seattle’s sagging Alaska
Way Viaduct, WA SR-520 and I-90 floating bridges, and
power-generation/drinking-water-supply dams throughout the
Cascadia subduction zone, including those along the Columbia
River.

The data streams from these 450 receivers is continuously
downloaded, analyzed, archived and disseminated, as part of
the existent geophysics and tectonics research programs within
the Department of Geological Sciences, CWU. These tec-
tonic displacement measurements are performed at millimeter-
scale, and requires stringent analysis and parameter estimation
techniques. The Geodesy Laboratory uses NASA’s GIPSY

OASIS (GPS Inferred Positioning SYstem, Orbital Analysis
and SImulation Software) software to translate GPS satellite
phase observables into position time series, and in-house
parameter estimation and modeling software to quantify crustal
deformation caused by plate tectonics, earthquakes, landslides
and volcanic eruptions.

The position of a GPS station is estimated from a com-
bination of satellite range and carrier phase measurements,
with the position accuracy being heavily dependent on the
accuracy of the satellite ephemerides, stability of the Cesium
time standards on board the orbiting satellites, and the realism
of models for both the tropospheric water content and electron
density of the ionosphere.

Presently, such a continuously-operating, real-time network
of GPS receivers is capable of detecting the strong ground
motion that accompanies large earthquakes in real-time. For
example, Fig. 2 shows data from one component of motion
at a single site due to the well known M9 2011 Tōhoku
earthquake in Japan. This time series is comparable to data
from traditional seismic instrumentation for the event but is
free from data artifacts common to seismic instruments, such
as ”clipping” of a time series due to physical limitations of
the instrument response. Thus, real-time high-sample-rate GPS
solutions can provide useful data to determine the magnitude
of large earthquakes in the immediate quake aftermath when
the size of the event is still being determined and emergency
response is being organized.

Ground deformation due to a major earthquake leads to a
sudden change in the positions of sensors across a wide zone.
One outstanding problem in monitoring any large network
of continuously operating instruments is facile observation
and analysis of its data streams. In the case of the Pacific
Northwest Geodetic Array, the 450 GPS stations each output
three continuous data channels: latitude, longitude, and vertical
position. For seismic monitoring applications, this means 1350
separate position streams from stations located across 1200
km along the West Coast of North America must be able to
be both visually observed and analyzed automatically. One of
the characteristics of seismic events is spatial coherence of the
observed earthquake deformation, which requires that station
behavior be monitored in spatially-clustered groups.

There are two conflicting factors which motivate our
present work. One is the potentially valuable information
which can be extracted from the GPS sensors’ data stream for
detecting major earthquakes. Obviously, such data is valuable
when extracted and processed in real-time. This takes us to
the second factor, which is the challenge posed by mining big
data sets of streaming data: we are more concerned about the
abundance, not the lack of data. The recent advancements in
data collection, such as data streams from sensors, exceed the
ability of the data scientists to really put data in context of the
questions and extract usable knowledge.

Our final goal is to make the real-time information from
GPS sensors easily available. This includes wider public access
via interfaces for all intelligent devices with a connection to
the Internet. Practically, a geologist with mobile phone access,
should have real-time access to streaming GPS position data.
When combined with other measurements and information,
this would help him to detect a major earthquake or landslide.

Fig. 2. Longitudinal movement of a GPS receiver located in Japan, during
the Tōhoku earthquake. The read line is the reading and the gray area is one
standard deviation border around the reading.

In this paper, we describe a novel clustering and visualiza-
tion method for the evolution of geodetic data (latitude, lon-
gitude, and vertical position) received from the GPS stations.
We are interested in clustering stations based on the similarity
of their behavior, which is not necessarily determined by
geographical distance. The input data streams are encoded
into symbol strings. We use the edit distance to determine the
similarity between strings. Based on this similarity, we cluster
the data streams on a SOM. In the final stage, we overlap
the resulted SOM on the geographical map (Google Map).
The SOM is dynamic and updates periodically. This graphical
representation of the data streams offers valuable information
regarding the seismic changes. Our implementation is plug-
gable dashboard that monitors the real-time status of a network
of GPS sensors.

The rest of the paper is structured as follows. Section II
describes our input data and the preliminary processing steps.
Section III explains the signal-to-symbol string transform. The
SOM clustering model is detailed in Section IV, whereas
Section V presents the graphical visualization of the results.
Experiments, including on real earthquake data, are described
in Section VI. Section VII contains the final remarks.

II. THE INPUT DATA

Our analysis runs on two data sets.

A. A PANGA data stream

The first data set is a six month capture of the life data
stream provided by PANGA. We collected the data available
real time from the PANGA network1 for approximatively 6
months; on average we had 70 − 80 simultaneously active
sensors, with periods of one, two or five seconds. The sensors
report geodetic data variations. This data set contains a few
local earthquakes, but no major earthquake, visible on the GPS
sensors charts. Each sensor may contain multiple streams, such
as raw data and normalized data.

We queried the public PANGA API and parsed the JSON
reply. Once obtained, the data has been stored in flat binary
files, one file per sensor stream. The files have a simple

1http://www.panga.org/realtime/data/api

fixed size record format, composed of time stamp, variation
on latitude, longitude and on elevation. We designed two
methods of iteration for this data collection: i) iterate each
stream in chronological order and ii) iterate the values of
all sensors at once in chronological order. The first method
is useful to compute signal statistics, with each sensor taken
independently, while the second method serves as a simulation
for real time dashboard, as it delivers all known data for a
specific point in time.

B. Simulated earthquake data

The second data set simulates an earthquake on the same
sensor network, using the Tōhoku patterns. This artificial data
set is constructed by relocating, via a Helmert [3] transfor-
mation that includes a translation, reflection, rotation, and
scaling of the Japanese national GPS network onto the Pacific
Northwest geographical region, with the Tokyo metropolitan
district aligned roughly to southwestern Washington State. This
is motivated by the tectonic similarity of the two regions
as seen from a seismological standpoint, both which are
active subduction zones capable of releasing magnitude-9 sized
earthquakes. After the Helmert transformation, the dynamic
displacements from the M9 Tōhoku earthquake of 3/11/11
appear to propagate across the Cascadia region, simulating,
to first order, displacements that might be observed during the
next Cascadia magnitude-9 earthquake. This data set contains
846 sensors each with a maximum of 10,800 data points,
recorded with 1Hz frequency. To reproduce the field data, some
sensors are missing certain data points or intervals of time.

The data set does not retain the same format of PANGA –
it is represented as space separated value text. This data has
been saved in the same binary format as the above mentioned
PANGA data, so that we benefited on the already implemented
iterators we wrote for the initial data set.

III. SIGNALS TO STRINGS

In order to transform a signal of length L = nt in a string
of length n, we break the signal in a set of time windows:
{[0, t], [t, 2t], [2t, 3t], . . . , [(n−1)t, nt]} and we design a statis-
tic which, applied to an interval, describes the trend of the
signal. We identify the signal behavior within a given time
windows by the following numbers, which are treated with
respect of the string as letters: strong growth (2), growth (1),
steady (0), decrease (-1), strong decrease (-2).

A. Quantifying the signal variation

Let f : [t1, t2]→ R be our signal, where [t1, t2] is one of
the [(k−1)t, kt] intervals from above, and the meaning of the
value is one of the three measurements (latitude, longitude,
and elevation) for the respective point in time. We consider
the signal continuous, but later we will move to the discrete
case. Let tM = (t1 + t2)/2, as shown in Fig. 3 be the middle
of the interval.

We can consider the slope of the signal as our statistic.
Unfortunately, the slope does not express the quantitative
amount of variation, but rather a fold change. We want to
compute a difference between the first and the second halves
of the interval, as shown in Fig. 3. The design of our statistic
is inspired from low pass filtering.

x

f(x)

t t t

1 2

1 2M

Fig. 3. Computing a statistic for signal clustering.

Let w : [0, 1] → R be a weight function, used to
discriminate the values of f closer to the point tM against
the ones closer to t1 and t2. We extend this function as:

w′ : [−1, 1]→ R

w′(x) =

⎧⎨
⎩
w(x), if x > 0.

−w(x), if x < 0.

0 if x = 0.

(1)

Obviously, w′(x) = −w′(−x).
We compute the weighted difference between areas 1 and

2 (Fig. 3):

Δt2
t1 =

∫ t2

tM

f(x)w

(
x− tM
t2 − tM

)
dx−

∫ tM

t1

f(x)w

(
tM − x

tM − t1

)
dx

=

∫ t2

tM

f(x)w′
(
x− tM
t2 − tM

)
dx+

∫ tM

t1

f(x)w′
(
x− tM
tM − t1

)
dx

=

∫ t2

t1

f(x)w′
(
x− tM
t2 − tM

)
dx

(2)

where: t2 − tM = tM − t1 = (t1 − t2)/2.

With w(x) = x, the statistic becomes:

Δt2
t1 =

∫ t2

t1

f(x)
x− tM
t2 − tM

dx (3)

For the discrete case, assuming that we have x1, x2, . . . , xn

discrete values measured at times t1, t2, . . . , tn, eq. (3) can be
written as follows:

Δtn
t1 =

1

n− 1

n∑
i=1

xi
ti − tM
tn − tM

, (4)

were tM = (t1 + tn)/2.

In the worst case, when only the values from extremities
of the interval are available, we have tM = (t1 + t2)/2 and

Fig. 4. Distribution of the Δt2
t1

statistic on non-earthquake data.

Δt2
t1 = x1

t1 − tM
t2 − tM

+ x1
t2 − tM
t2 − tM

= x2 − x1 (5)

The statistic can be computed on two vectors of different
size, but corresponding to an equal time window. Other works,
such as [4], allow comparison of different length strings and
handle the difference through the signal comparison distance.

B. Distribution of the Δt2
t1 statistic

After computing the Δt2
t1 statistic by eq. (4) from non-

earthquake signals of 30 seconds length collected during six
months from the PANGA network, described in Subsection
II-A we have obtained the distribution shown in Fig. 4. We
have to note that Tn−T1 = 30s but n may vary due to different
sampling rate. By removing the predominant value of 0, we
observe that our distribution is normal, with standard deviation
σ = 0.01. Running the same statistic on simulated earthquake
data, we find the earthquake data, mentioned in Subsection II-B
having a much larger variance, with σ = 10. In both cases,
the variance is the same on the three measurements directions:
north, west, and elevation. Also, the mean of the statistic is
zero.

C. Number assignment

We assign a number q between −2 and 2 to the signal,
based on the computed statistic Δt2

t1 and the observed standard
deviation σ, as follows:

q =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−2, if Δt2
t1 < −2σ.

−1, if Δt2
t1 ∈ [−2σ,−σ)

0, if Δt2
t1 ∈ [−σ, σ]

1, if Δt2
t1 ∈ (σ, 2σ]

2, if Δt2
t1 > 2σ

(6)

IV. THE SOM CLUSTERING OF SIGNAL STRINGS

Once we transform the signals to strings of the same size,
we aim to cluster our input data and determine the centroids
associated with various patterns of signals. Instead of the
standard SOM for strings [5], we will use the ESOM [6], which
is specifically designed for on-line data streams because i) it

is quickly able to assign a new cluster to a newly occurred
pattern, and ii) it can discard clusters if no signal fulfills the
minimal distance to the centroid within a prescribed number
of inputs.

Our contribution is to embed our application into the
ESOM framework, which turns out to be quite laborious. First,
we have to define the distance between two strings. Second,
we have to define the learning process in the ESOM.

A. The distance between strings

Our starting point is the Levenshtein (edit) distance be-
tween two strings [7]. The edit distance is sensitive to dis-
placements in the strings, matching the common pattern even
it is not located at the same offset relative to the base, being
superior, in the context of pattern matching, to covariance
based distances. The Levenshtein distance is computed as a
sum of costs, associated with the need to change, delete and
insert a character. The original Levenshtein distance is not
sensitive to how different two characters are. For example,
turning a letter into another letter has a fixed cost, no matter
the letters.

In our case, the numbers correspond to different classes
of variation. For example, replacing −2 with −1 shall carry
a smaller cost than replacing −2 with 1. Another observation
is that class 0, associated to a steady signal, is neutral with
respect to the information from that signal. Hence, the cost
of inserting or deleting a 0 should be less than the cost
of the same operation performed with another character. For
similar reasons, Needleman and Wunsch [8] introduced a
dissimilarity matrix, to describe the replacement cost (which
can be different) for each two characters.

To formalize this concept, we introduce the alphabet Q =
{−2,−1, 0, 1, 2} and the the Kleene closure of Q (i.e., the set
of all strings over Q of any length). Let φ be the empty string.
We can design our cost function as the absolute value of the
difference of two numbers.

We consider the following lev : Q∗ ×Q∗ → R
+ modified

Levenshtein distance:

lev(a, b) = min
(
lev(a′, b′) + |an − bm|,
lev(a′, b) + |an|+ δ,

lev(a, b′) + |bm|+ δ
) (7)

where: a, b ∈ Q∗, a = (a1, a2, . . . , an), b = (b1, . . . , bm)
and the condition to end the recursion is lev(φ, φ) = 0. The
strings a′ and b′ are obtained by removing the last element
from strings a, respectively b. In the above recursive definition,
a′ and b′ are not defined for a = φ, respectively b = φ. δ is
a positive constant, representing the costs of one insertion or
deletion. The function lev is a distance defined on the space
Q∗ of strings.

Essentially, our modification consists in introducing the
variable cost terms |an| + δ and |bm| + δ for insertion,
respectively and deletion. The Needleman-Wunsch distance [8]
prescribes a fixed cost in these cases.

The distance lev is able to distinguish between the intensi-
ties of the signal, it penalizes much more insertion and deletion

O

w

w'

x

x(1-)w

Fig. 5. Relation between x, w and w′.

of extreme values than insertion of steady (0) or close to steady
signals. The same approach works for modification: neighbor
signal classes yield less distance than the opposite ones.

We defined the distance between signals in this simplified
manner because the meaning of the five signal classes we
operate with is well known. However, if the nature of the
signals and the relations between them would be unknown,
a dynamic dissimilarity matrix may be employed, as in [9].

B. Training the network by adjusting strings

In [6], the nodes of the ESOM are vectors, with a well
defined vector operations (addition, subtraction and multipli-
cation with scalar) as well as the norm operator. The update
algorithm is governed by eq. (8), where w is a centroid, x
is an input pattern, and w′ is the updated value of w. The
parameter γ is a small learning rate and σ controls the effective
neighborhood spread.

w′ = (1− α)w + αx where α = γe− ‖w−x‖
σ2 (8)

To be able to employ the training algorithm to operate with
strings, we have to adapt the formula so that it only uses the
distance, which is the only operator available on the string
space. First we replace the norm of the vector difference with
the distance between two elements, in our case, it is the adapted
Levenshtein distance described in Subsection IV-A. In a strictly
convex Banach space, we can prove that eq. (8) is equivalent

to eqs. (9) and (10), where α = γe− lev(w,x)

σ2 .

lev(w, x) = lev(x,w′) + lev(w′, w) (9)

α = lev(w,w′)/lev(x,w) (10)

The string space is not a strictly convex Banach space,
but the resulted pair of equations operates with distances only,
therefore they provide an approximation good enough for the
adjusted value of the element, we need to compute.

The reasoning behind the assumption is depicted in Fig.
5, which is a geometrical interpretation of eq. (8). In this
representation, our strings have a vector representation, which
is mathematically not correct, but intuitive. Using the parallel-
ogram rule, we obtain w′ as the sum of the vectors w1 = (1−

α)w and x1 = αx. Following, we demonstrate that w,w′ and x
are collinear. Since ∠ww1w

′ = ∠wox, because w1w
′ ‖ Ox ,

ww1/Ow = (Ow−Ow1)/Ow = (Ow−(1−α)Ow)/Ow = α
and w′w1/Ox = Ox1/Ox = (αOx)/Ox = α. Therefore,
�ww1 ∼ �ww1w

′, according to the side-angle-side simi-
larity criterion, with the ratio α. Because of this similarity,
∠Owx = ∠Oww′. Therefore, w, w′ and x are collinear, and
ww′/wx = α.

While we can easily find strings which fulfill eq. (9), due to
the discrete nature of the string space, we cannot always find
w′, so that it fulfills eq. (10) for an arbitrary α. Therefore, we
shall identify the w′ strings which fullfil eq. (9) and, at the
same time, minimize the approximation error in eq. (10).

Given two strings w and x, we use the Needleman-Wunsch
algorithm [8], based on dynamic programming, to compute
both the Levenshtein distance between the two strings and the
minimum sequence of operations to transform one string into
the other. These operations are from the set R = ins(q) (insert),
del(q) (delete), chg(q, p) (change q into p), and keep(q) (do
no change, just advance the next character), where q, p ∈ Q.
Let us consider R∗, the Kleene closure of R.

Data: r ∈ R∗
Initialize x with the empty string;
for each element op(qk) in r: do
if op ∈ {keep, chg, ins} then

append qk to x
end

end
Result: x
Algorithm 1: Algorithm to compute x when the r sequence
of operations is known.

Algorithm 1 shows how the optimal sequence of operations
leads to the goal string x. We change this algorithm, so that it
builds a different string, as well as an annotation which will
serve as support for the construction of the solution w′.

The changed Algorithm 2 produces a string y where the
deletions are not being applied. For each character of the newly
produced string, we compute the corresponding entry in the
boolean vector removable, which holds true for characters
originated of either insertions or skipped deletions, and false
for the rest. Also, we build an additional vector of ranges.
The ranges are computed as following: for insertions and
deletions, they are between the subject character and the
median character 0, changes ranges are between the original
and the new character and the keep operations yield no range.

We observe that not only the string resulted from Algorithm
2, but also any string produced by removing characters corre-
sponding to true values in removable, as well as alteration
of the remaining characters, by picking a value from the
range, satisfies eq. (9). We can prove that the string generation
method is exhaustive: no string satisfying eq. (9) can elude our
generation method.

We have to find now the strings which also minimize the
approximation error for eq. (10). We solve this search problem
by backtracking, which is acceptable for our small search
space. Due to the fact that the distance between strings is a
combination of unit and δ additions, a more computational

Data: w ∈ Q∗, r ∈ R∗
Initialize y with the empty string;
Initialize removable with the empty vector;
Initialize ranges with the empty vector;
for each element op(qk, pk) in r: do

append qk to y;
start = qk ;
if op ∈ {ins, del} then

append true to removable ;
stop = 0 ;

else
append false to removable ;
stop = pk ;

end
r = [min(start, stop),max(start, stop)] ;
append r to ranges ;

end
Result: y, removable, ranges
Algorithm 2: Algorithm to compute y when w, and the r
sequence of operations are known.

e

ci

M

C

n

ae
ai

b

Fig. 6. Computation of the color angle.

efficient approach could be used, if needed. From the set of
solutions, we choose the smallest string w′ (in lexicographic
order).

V. GRAPHICAL REPRESENTATION AND IMPLEMENTATION

Once the SOM is being constructed, we discard the neigh-
borhood relations and assign colors to the centroids. Based on
the distance from the closest centroid and the neutral point,
each point of the string space can be colored. For the neutral
string, composed integrally of 0s, we assign the white color.

We assign an angle ai from the set {0◦, 30◦, 60◦, . . . , 330◦}
to each cluster centroid, ci. The allocation is performed by
the dimension multidimensional scaling (MDS) [10], [11]
algorithm.

For a given string e, we identify the closest cluster centroid,
with respect of our modified Levenshtein distance, from eq.
(7). We take one of the elements of the set: argmin

ci
lev(ci, e).

We determine the distance between e and the neutral
element C = ”0000000000”. We compute the angle ai
determined by e, C and ci, given that the edges of the triangle
generated by the three points can be computed, as shown in
Fig. 6.

Let M be the maximum of the distances from signals to the
center C. The re is a normalized value, it belongs to the [0, 1]

TABLE I. SOM COEFFICIENTS FOR DIFFERENT RUNS.

Run ε σ λ MaxGen MaxDist N
Toy 1 9 ε/2 0.02 1000 25 5
Toy 1 9 ε/2 0.02 1000 20 5
Toy 3 13 ε/2 0.02 1000 20 5
Toy 4 6 ε/2 0.02 1000 20 5
Toy 5 9.1 ε/2 0.02 1000 50 5

Earthq. 10 ε/2 0.2 100000 50 5

interval. Given ae and re, we can compute the color of the
element by assigning the angle ae to hue and the normalized
re ∈ [0, 1] to saturation.

b = arccos
(lev(C, ci)2 + lev(C, e)2 − lev(ci, e)

2

2lev(C, ci)lev(C, e)

)

ae = ai + b, re =
lev(C, e)

M

(11)

We realize the graphical representation of the clustered
GPS stations (Fig. 7), which is drawn over the map using:
Google Maps and Overlay layer to render the map, JSON
format for colors and sensor positions, and d3.js for SVG
rendering within the overlay layer. The visualization is com-
pletely written in JavaScript, and it does not require any server
component, as long as the JSON data file is being provided to
the application.

VI. EXPERIMENTS

We perform a number of experiments, first on a toy
example, then on the earthquake data.

The parameters of our ESOM implementation are:

• ε is a error threshold, used to define the concept of
neighborhood; it is expressed in the distance unit and
defines whether the newcomer elements goes in an
existing cluster or it will have its own new cluster.

• σ controls the neighborhood spread.

• λ controls the learning rate of the neural network, the
impact of new elements against the old centroids.

• MaxGen is being introduced as a response to the
requirements to prune inactive nodes, according to the
4th step of the ESOM algorithm from[6]. If the node
has not been adjusted or linked the provided number
of learn cycles, it is being removed after exceeding
the value.

• MaxDist: same as above, this coefficient has been
introduced as result of need to prune weak connec-
tions, from the same step in ESOM algorithm as
MaxGen. If the distance of the two elements exceeds
the coefficient (due to incremental application of the
learning mechanism) the connection is being deleted.

• N controls the number of neighbors initially assigned
to an elements. In the original description [6], N
is hardcoded at 2, while we allow any value to be
provided. If N is chosen excessively large, so that a
new centroid starts with many initial connections, it
is likely that these connections will be removed upon
applying MaxDist.

We design a simple experiment with five well-know and
easy distinguishable signal types: steady, increases than de-
creases, decreases than increases, constantly increases and
steadily decreases. These signals don’t originate from any data
set described in Section II, but they were manually generated,
a few examples have been provided for each class. We vary the
values of the coefficients according to Table I and observe the
topology of the resulting network. For brevity, the diagrams
use the letters A to E instead of the numbers −2 to 2.

• For the first case shown in Fig. 8, all centroids were
identified, however it occurs twice that an expected
cluster is represented by two centroids and also, there
are neighborhood relations between opposed patterns,
such as steady growth and steady decrease.

• In the case of Fig. 9, the problem of multiple centroids
persists, however only applied to one cluster, and some
expected topological relations are missing, but there is
no relation between opposing patterns.

• The third run (Fig. 10) fails to identify two of the
centroids.

• Fig. 11 depicts the fourth case, where additional
centroids for each cluster are being returned, while
properly identifying the topology.

• The fifth run (Fig. 12) identifies properly the centroids
of each cluster and shows 5 out of the expected 6
neighborhood relations between the clusters.

More relevant, but harder to follow is the analysis of the
PANGA simulated earthquake data described in Subsection
II-B, using the parameters from Table I. The resulted topology
is shown in Fig. 13 and the dynamic graphical representation
of the clustered GPS sensors can be accessed online2.

VII. CONCLUSION

We have described a clustering and visualization method
for signals from GPS stations. The output depends largely on
the a priori knowledge of the standard deviation of Δ statistics
associate to the signals as well as on the choice of coefficients
of the neural network, which basically control: a) the number
of generated clusters and b) the speed of forgetting past data
irrelevant in the present.

The principal application of the algorithm presented here
is in the real-time monitoring of large, dense, and spatially
extensive geodetic networks. Current and incipient networks
will run into the thousands of stations, preventing manual
inspection of data analysis for transient phenomena such
as that caused by earthquakes, landslides, or other natural
hazards. Much as seismic networks are currently monitored
for exceeding of floor noise levels to trigger the identification
of an earthquake, the clustering algorithm outlined here can be
utilized to provide automated transient detection for alarming
and monitoring systems.

Our method can be plugged in a real time seismic data
processing pipeline, or it can be used as a visualization tool
for relevant seismic events. The method will incrementally
learn new patterns and dynamically update the SOM and the
graphical representation.

2http://www.miravtech.com/maps/map.html

Fig. 7. Visual representation of the sensor network.

REFERENCES

[1] A. C. Aguiar, T. I. Melbourne, and C. W. Scrivner, “Moment release
rate of Cascadia tremor constrained by GPS,” Journal of Geophysical
Research, vol. 114, Jul. 2009.

[2] W. Bertiger, S. D. Desai, B. Haines, N. Harvey, A. W. Moore, S. Owen,
and J. P. Weiss, “Single receiver phase ambiguity resolution with GPS
data,” Journal of Geodesy, vol. 84, pp. 327–337, May 2010.

[3] G. Watson, “Computing helmert transformations,” Journal of Compu-
tational and Applied Mathematics, vol. 197, no. 2, pp. 387–394, 2006.

[4] A. Marzal and E. Vidal, “Computation of normalized edit distance and
applications,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 15, no. 9,
pp. 926–932, sep 1993.

[5] T. Kohonen and P. Somervuo, “Self-organizing maps of symbol strings,”
Neurocomputing, vol. 21, pp. 19 – 30, 1998.

[6] D. Deng and N. K. Kasabov, “ESOM: An algorithm to evolve self-
organizing maps from on-line data streams,” in IJCNN (6), 2000, pp.
3–8.

[7] V. Levenshtein, “Binary Codes Capable of Correcting Deletions, Inser-
tions and Reversals,” Soviet Physics Doklady, vol. 10, p. 707, 1966.

[8] S. B. Needleman and C. D. Wunsch, “A general method applicable to
the search for similarities in the amino acid sequence of two proteins,”
Journal of Molecular Biology, vol. 48, no. 3, pp. 443–453, 1970.

[9] M. Fuad and P.-F. Marteau, “The extended edit distance metric,” in
Content-Based Multimedia Indexing, 2008. CBMI 2008. International
Workshop on, June 2008, pp. 242–248.

[10] J. B. Kruskal and M. Wish, Multidimensional Scaling (Quantitative
Applications in the Social Sciences). SAGE Publications, Inc, 1978.

[11] I. Borg and P. J. F. Groenen, Modern Multidimensional Scaling: Theory
and Applications (Springer Series in Statistics). Springer, 2005.

Fig. 8. Toy example 1.

Fig. 9. Toy example 2.

Fig. 10. Toy example 3.

Fig. 11. Toy example 4.

Fig. 12. Toy example 5.

Fig. 13. Layout of the earthquake ESOM.

